\(\int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [841]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 105 \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\sec ^3(c+d x)}{a^3 d}+\frac {2 \sec ^5(c+d x)}{a^3 d}-\frac {11 \sec ^7(c+d x)}{7 a^3 d}+\frac {4 \sec ^9(c+d x)}{9 a^3 d}-\frac {3 \tan ^7(c+d x)}{7 a^3 d}-\frac {4 \tan ^9(c+d x)}{9 a^3 d} \]

[Out]

-sec(d*x+c)^3/a^3/d+2*sec(d*x+c)^5/a^3/d-11/7*sec(d*x+c)^7/a^3/d+4/9*sec(d*x+c)^9/a^3/d-3/7*tan(d*x+c)^7/a^3/d
-4/9*tan(d*x+c)^9/a^3/d

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2954, 2952, 2686, 276, 2687, 14, 30} \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {4 \tan ^9(c+d x)}{9 a^3 d}-\frac {3 \tan ^7(c+d x)}{7 a^3 d}+\frac {4 \sec ^9(c+d x)}{9 a^3 d}-\frac {11 \sec ^7(c+d x)}{7 a^3 d}+\frac {2 \sec ^5(c+d x)}{a^3 d}-\frac {\sec ^3(c+d x)}{a^3 d} \]

[In]

Int[(Sin[c + d*x]*Tan[c + d*x]^4)/(a + a*Sin[c + d*x])^3,x]

[Out]

-(Sec[c + d*x]^3/(a^3*d)) + (2*Sec[c + d*x]^5)/(a^3*d) - (11*Sec[c + d*x]^7)/(7*a^3*d) + (4*Sec[c + d*x]^9)/(9
*a^3*d) - (3*Tan[c + d*x]^7)/(7*a^3*d) - (4*Tan[c + d*x]^9)/(9*a^3*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^5(c+d x) (a-a \sin (c+d x))^3 \tan ^5(c+d x) \, dx}{a^6} \\ & = \frac {\int \left (a^3 \sec ^5(c+d x) \tan ^5(c+d x)-3 a^3 \sec ^4(c+d x) \tan ^6(c+d x)+3 a^3 \sec ^3(c+d x) \tan ^7(c+d x)-a^3 \sec ^2(c+d x) \tan ^8(c+d x)\right ) \, dx}{a^6} \\ & = \frac {\int \sec ^5(c+d x) \tan ^5(c+d x) \, dx}{a^3}-\frac {\int \sec ^2(c+d x) \tan ^8(c+d x) \, dx}{a^3}-\frac {3 \int \sec ^4(c+d x) \tan ^6(c+d x) \, dx}{a^3}+\frac {3 \int \sec ^3(c+d x) \tan ^7(c+d x) \, dx}{a^3} \\ & = -\frac {\text {Subst}\left (\int x^8 \, dx,x,\tan (c+d x)\right )}{a^3 d}+\frac {\text {Subst}\left (\int x^4 \left (-1+x^2\right )^2 \, dx,x,\sec (c+d x)\right )}{a^3 d}+\frac {3 \text {Subst}\left (\int x^2 \left (-1+x^2\right )^3 \, dx,x,\sec (c+d x)\right )}{a^3 d}-\frac {3 \text {Subst}\left (\int x^6 \left (1+x^2\right ) \, dx,x,\tan (c+d x)\right )}{a^3 d} \\ & = -\frac {\tan ^9(c+d x)}{9 a^3 d}+\frac {\text {Subst}\left (\int \left (x^4-2 x^6+x^8\right ) \, dx,x,\sec (c+d x)\right )}{a^3 d}+\frac {3 \text {Subst}\left (\int \left (-x^2+3 x^4-3 x^6+x^8\right ) \, dx,x,\sec (c+d x)\right )}{a^3 d}-\frac {3 \text {Subst}\left (\int \left (x^6+x^8\right ) \, dx,x,\tan (c+d x)\right )}{a^3 d} \\ & = -\frac {\sec ^3(c+d x)}{a^3 d}+\frac {2 \sec ^5(c+d x)}{a^3 d}-\frac {11 \sec ^7(c+d x)}{7 a^3 d}+\frac {4 \sec ^9(c+d x)}{9 a^3 d}-\frac {3 \tan ^7(c+d x)}{7 a^3 d}-\frac {4 \tan ^9(c+d x)}{9 a^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.73 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.76 \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {-1344+8676 \cos (c+d x)-11232 \cos (2 (c+d x))+482 \cos (3 (c+d x))+4416 \cos (4 (c+d x))-1446 \cos (5 (c+d x))-32 \cos (6 (c+d x))-1152 \sin (c+d x)+6507 \sin (2 (c+d x))-8128 \sin (3 (c+d x))+2892 \sin (4 (c+d x))+192 \sin (5 (c+d x))-241 \sin (6 (c+d x))}{64512 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 (a+a \sin (c+d x))^3} \]

[In]

Integrate[(Sin[c + d*x]*Tan[c + d*x]^4)/(a + a*Sin[c + d*x])^3,x]

[Out]

(-1344 + 8676*Cos[c + d*x] - 11232*Cos[2*(c + d*x)] + 482*Cos[3*(c + d*x)] + 4416*Cos[4*(c + d*x)] - 1446*Cos[
5*(c + d*x)] - 32*Cos[6*(c + d*x)] - 1152*Sin[c + d*x] + 6507*Sin[2*(c + d*x)] - 8128*Sin[3*(c + d*x)] + 2892*
Sin[4*(c + d*x)] + 192*Sin[5*(c + d*x)] - 241*Sin[6*(c + d*x)])/(64512*d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])
^3*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(a + a*Sin[c + d*x])^3)

Maple [A] (verified)

Time = 0.66 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.08

method result size
parallelrisch \(\frac {\frac {16}{63}-\frac {32 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\frac {32 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{63}-\frac {48 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}-\frac {64 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {64 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21}+\frac {32 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{21}}{d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9}}\) \(113\)
risch \(-\frac {2 i \left (-128 i {\mathrm e}^{3 i \left (d x +c \right )}+75 \,{\mathrm e}^{2 i \left (d x +c \right )}+6 i {\mathrm e}^{i \left (d x +c \right )}-162 \,{\mathrm e}^{4 i \left (d x +c \right )}-1-36 i {\mathrm e}^{5 i \left (d x +c \right )}-42 \,{\mathrm e}^{6 i \left (d x +c \right )}-189 \,{\mathrm e}^{8 i \left (d x +c \right )}+126 i {\mathrm e}^{9 i \left (d x +c \right )}+63 \,{\mathrm e}^{10 i \left (d x +c \right )}\right )}{63 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{9} d \,a^{3}}\) \(143\)
derivativedivides \(\frac {-\frac {1}{24 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{16 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {3}{32 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {8}{9 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9}}-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{8}}+\frac {48}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}-\frac {16}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}+\frac {3}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {1}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {3}{32 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d \,a^{3}}\) \(190\)
default \(\frac {-\frac {1}{24 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{16 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {3}{32 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {8}{9 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9}}-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{8}}+\frac {48}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}-\frac {16}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}+\frac {3}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {1}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {3}{32 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d \,a^{3}}\) \(190\)
norman \(\frac {-\frac {64 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7 d a}+\frac {16}{63 a d}+\frac {32 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{21 d a}+\frac {208 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{63 d a}+\frac {128 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{63 d a}-\frac {80 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 d a}-\frac {544 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{63 d a}-\frac {32 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {368 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2}}\) \(205\)

[In]

int(sec(d*x+c)^4*sin(d*x+c)^5/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

16/63*(1-42*tan(1/2*d*x+1/2*c)^6+2*tan(1/2*d*x+1/2*c)^3-27*tan(1/2*d*x+1/2*c)^4-36*tan(1/2*d*x+1/2*c)^5+12*tan
(1/2*d*x+1/2*c)^2+6*tan(1/2*d*x+1/2*c))/d/a^3/(tan(1/2*d*x+1/2*c)-1)^3/(tan(1/2*d*x+1/2*c)+1)^9

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.22 \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\cos \left (d x + c\right )^{6} - 36 \, \cos \left (d x + c\right )^{4} + 57 \, \cos \left (d x + c\right )^{2} - {\left (3 \, \cos \left (d x + c\right )^{4} - 34 \, \cos \left (d x + c\right )^{2} + 7\right )} \sin \left (d x + c\right ) - 14}{63 \, {\left (3 \, a^{3} d \cos \left (d x + c\right )^{5} - 4 \, a^{3} d \cos \left (d x + c\right )^{3} + {\left (a^{3} d \cos \left (d x + c\right )^{5} - 4 \, a^{3} d \cos \left (d x + c\right )^{3}\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^5/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/63*(cos(d*x + c)^6 - 36*cos(d*x + c)^4 + 57*cos(d*x + c)^2 - (3*cos(d*x + c)^4 - 34*cos(d*x + c)^2 + 7)*sin(
d*x + c) - 14)/(3*a^3*d*cos(d*x + c)^5 - 4*a^3*d*cos(d*x + c)^3 + (a^3*d*cos(d*x + c)^5 - 4*a^3*d*cos(d*x + c)
^3)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**4*sin(d*x+c)**5/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 382 vs. \(2 (97) = 194\).

Time = 0.23 (sec) , antiderivative size = 382, normalized size of antiderivative = 3.64 \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {16 \, {\left (\frac {6 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {12 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {2 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {27 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {36 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {42 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}}{63 \, {\left (a^{3} + \frac {6 \, a^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {12 \, a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {2 \, a^{3} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {27 \, a^{3} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {36 \, a^{3} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {36 \, a^{3} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {27 \, a^{3} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {2 \, a^{3} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {12 \, a^{3} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} - \frac {6 \, a^{3} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}} - \frac {a^{3} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}}\right )} d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^5/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-16/63*(6*sin(d*x + c)/(cos(d*x + c) + 1) + 12*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 2*sin(d*x + c)^3/(cos(d*x
 + c) + 1)^3 - 27*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 36*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 42*sin(d*x +
c)^6/(cos(d*x + c) + 1)^6 + 1)/((a^3 + 6*a^3*sin(d*x + c)/(cos(d*x + c) + 1) + 12*a^3*sin(d*x + c)^2/(cos(d*x
+ c) + 1)^2 + 2*a^3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 27*a^3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 36*a^3*
sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 36*a^3*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 27*a^3*sin(d*x + c)^8/(cos(
d*x + c) + 1)^8 - 2*a^3*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 12*a^3*sin(d*x + c)^10/(cos(d*x + c) + 1)^10 - 6
*a^3*sin(d*x + c)^11/(cos(d*x + c) + 1)^11 - a^3*sin(d*x + c)^12/(cos(d*x + c) + 1)^12)*d)

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.64 \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {21 \, {\left (9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 11\right )}}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}} - \frac {189 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} + 1764 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 7224 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 16380 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 19026 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 16380 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8352 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2340 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 281}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{9}}}{2016 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^5/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/2016*(21*(9*tan(1/2*d*x + 1/2*c)^2 - 24*tan(1/2*d*x + 1/2*c) + 11)/(a^3*(tan(1/2*d*x + 1/2*c) - 1)^3) - (189
*tan(1/2*d*x + 1/2*c)^8 + 1764*tan(1/2*d*x + 1/2*c)^7 + 7224*tan(1/2*d*x + 1/2*c)^6 + 16380*tan(1/2*d*x + 1/2*
c)^5 + 19026*tan(1/2*d*x + 1/2*c)^4 + 16380*tan(1/2*d*x + 1/2*c)^3 + 8352*tan(1/2*d*x + 1/2*c)^2 + 2340*tan(1/
2*d*x + 1/2*c) + 281)/(a^3*(tan(1/2*d*x + 1/2*c) + 1)^9))/d

Mupad [B] (verification not implemented)

Time = 15.31 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.98 \[ \int \frac {\sin (c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {16\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}}{63}+\frac {32\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}+\frac {64\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{21}+\frac {32\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{63}-\frac {48\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{7}-\frac {64\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{7}-\frac {32\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}}{a^3\,d\,{\left (\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}^3\,{\left (\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}^9} \]

[In]

int(sin(c + d*x)^5/(cos(c + d*x)^4*(a + a*sin(c + d*x))^3),x)

[Out]

-((16*cos(c/2 + (d*x)/2)^12)/63 + (32*cos(c/2 + (d*x)/2)^11*sin(c/2 + (d*x)/2))/21 - (32*cos(c/2 + (d*x)/2)^6*
sin(c/2 + (d*x)/2)^6)/3 - (64*cos(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)/2)^5)/7 - (48*cos(c/2 + (d*x)/2)^8*sin(c/2
+ (d*x)/2)^4)/7 + (32*cos(c/2 + (d*x)/2)^9*sin(c/2 + (d*x)/2)^3)/63 + (64*cos(c/2 + (d*x)/2)^10*sin(c/2 + (d*x
)/2)^2)/21)/(a^3*d*(cos(c/2 + (d*x)/2) - sin(c/2 + (d*x)/2))^3*(cos(c/2 + (d*x)/2) + sin(c/2 + (d*x)/2))^9)